

Bridget Bucher, PharmD April 6, 2023

Now We Got Bad Blood: Desensitization in Solid Organ Transplant

Bridget Bucher, PharmD

PGY2 Solid Organ Transplant Pharmacy Resident University of Utah Health bridget.bucher@hsc.utah.edu

Disclosure

• Relevant Financial Conflicts of Interest

- CE Presenter, Bridget Bucher, PharmD:
 - None
- CE Mentor, Todd Larson, PharmD, BCTXP:
 None
- CE Mentor, Kelsea Zukauckas, PharmD, BCPS:
 - None
- Off-Label Uses of Medications
 - · Bortezomib, Carfilzomib, Intravenous Immune Globulin (IVIG), Rituximab, Tocilizumab
- Investigational Agents
 - Clazakizumab, Imlifidase

Learning Objectives – Pharmacists

Learning Objectives – Technicians

Recognize various agents used for desensitization in solid organ transplant

Apply knowledge on the preparation of agents used for desensitization

Discuss potential cost barriers associated with desensitization therapies

Abbreviations

ACR – Acute Cellular Rejection	IdeS – IgG-Degrading Enzyme Derived from <i>Streptococcus pyogenes</i>	PML – Progressive Multifocal Leukoencephalopathy
ADR – Adverse Drug Reactions	IgG – Immunoglobulin G	POD – Post-Op Day
AKI – Acute Kidney Injury	IL-6 - Interleukin-6	PRA – Panel Reactive Antibody
AMR – Antibody Mediated Rejection	IL-6R - Interleukin-6 Receptor	SAE – Serious Adverse Events
AWP – Average Wholesale Price	IV – Intravenous	SC – Subcutaneous
D5W – 5% Dextrose	IVIG – Intravenous Immune Globulin	SWFI – Sterile Water for Injection
DDKT – Deceased Donor Kidney Transplantation	LRKT – Living Related Kidney Transplantation	TCR – T cell Receptor
DSA – Donor Specific Antibody	MHC – Major Histocompatibility Complex	TPE – Therapeutic Plasma Exchange
FDA – Food and Drug Administration	PLEX – Plasma Exchange	TXP – Transplant
HLA – Human Leukocyte Antigen	PMH – Past Medical History	UTI – Urinary Tract Infection

10

USHP

Immunology Refresher

INNATE IMMUNE SYSTEM

- *Nonspecific* immune response to a foreign pathogen
- · Serves as the first-line of defense:
 - Physical barriers
 - Chemical barriers
- Phagocytic cells (macrophages, neutrophils, etc.)

ADAPTIVE IMMUNE SYSTEM

11

13

- Memory response to a *specific* foreign pathogen
- Cell-mediated immunity:
 - Cytotoxic (CD8+) and helper (CD4+) T cells
- Humoral immunity:
 - Antibody production by B cells
 - and plasma cells

Background

Adaptive Immune System

Step 1: Antigen presenting cell (ex: B cell) presents foreign antigen to T cell

Transplant Immunology

- Major histocompatibility complex (MHC) molecules present antigens to T cells
 - MHC = human leukocyte antigen (HLA)
- In transplant, rejection can occur from foreign antigens (i.e., transplanted allograft)
 - MHC molecules are major antigen targets of rejection
 - Direct vs. indirect recognition

Activated B cell

15

17

Human Leukocyte Antigen

HLA Class I

oy, et al. N Engl J Med 2018; 379(12):1150-1160

- HLA-A, HLA-B, and HLA-C
- · Found on all nucleated cells
- Present antigens to cytotoxic (CD8+) T cells → destruction

HLA Class II

- HLA-DR, HLA-DQ, and HLA-DP
- Found on antigen presenting cells
- Present antigens to helper (CD4+) T cells → antibody production

14

Adaptive Immune System

Step 2: Activated B cell matures into memory B cells or plasma cells, which produce antibodies

py, et al. N Engl J Med 2018; 379(12):1150-116

Measuring Antibodies

Panel Reactive Antibody	Prospective	Donor-Specific Antibodies	
(PRA)	Cross-Matching	(DSA)	
 <u>Performed pre-transplant</u> Measurement of recipient's antibodies to a panel of human antigens Represents the percentage of the population the recipient has pre-formed antibodies against Example: recipient with PRA of 80% is incompatible with 80% of donors 	 <u>Performed at the time of</u> <u>transplant</u> Recipient serum potentially containing DSA is mixed with donor T or B lymphocytes Positive crossmatch indicates DSA, increasing the risk of rejection 	 <u>Performed pre- or post-transplant</u> Detects specific antibodies against a particular donor's HLA antigens DSA may be pre-formed (developed before transplant) or de-novo (developed after transplant) 	

Sensitization Events

Sensitization in Transplant

on OPTN data as of February 2023.

11% of kidney transplant candidates on the waitlist are highly sensitized (PRA >80%)

25% of heart transplant candidates on the waitlist are highly sensitized (PRA >80%)

Impact of Sensitization in Transplant

Increased waitlist time

Increased morbidity and mortality on the waitlist

Risk of hyperacute rejection

Increased rates of antibody mediated rejection (AMR)

Early graft loss

Desensitization Overview

Cirrhosis secondary to congenital heart diseaseListed for dual heart-liver transplant in 9/2022

USHP

• PMH:

22

• 100% PRA at the time of listing

Hypoplastic left heart syndrome

Patient Case

• CV is a 33-year-old female

 Sensitization events: multiple congenital heart surgeries and transfusions for menorrhagia 23

Backbone Agents

IVIG Mechanism of Action

- Several proposed mechanisms of action:
 - Neutralization of circulating anti-HLA antibodies
 - Inhibition of complement activation
 - Binding to Fc receptors on immune cells
 - Prevents rebound of pre-formed antibodies by providing circulating IgG

IVIG Dosing and Administration

Dose	Preparation
0.1 g/kg/dose to 2 g/kg/dose IV Low-Dose High-Dose	 Not compounded Spike and hang IVIG product from v
Administration	Adverse Reactions
 Premedication recommended with acetaminophen and diphenhydramine prior to infusion Infusion rate dependent on IVIG product 	 Infusion reactions Boxed warnings: Renal dysfunction and acute renal (sucrose containing products)

31

Immune Globulin Lexicomp 2023

Plasmapheresis

s Immune Globulin. Lexicomp. 2023

- Plasmapheresis = Plasma Exchange (PLEX) = Therapeutic Plasma Exchange (TPE)
- Approved for desensitization in ABO incompatible kidney transplant

• Mechanism of action:

Direct removal of anti-HLA antibodies

IVIG and Plasmapheresis Literature

	Trial	Intervention	Outcomes
	Glotz, et al. 2002. Pre-txp: IVIG 2 g/kg monthly x 3 • Pilot trial months	 87% (13/15) transplanted 11 DDKT – mean PRA 64% before vs. 14% after 	
e IVIG	• N=15 GpD	Post-txp: IVIG 2 g/kg on POD 0, 1, 20, 21, 40, 41	ZLRK I – positive crossmatch before vs. negative after [77% (10/13) developed rebound DSA] Zepisodes of graft loss (1 thrombosis, 1 rejection)
High-Dos	 Jordan, et al. 2004. Randomized, double- blind, placebo- controlled trial 	Pre-txp: IVIG 2 g/kg monthly x 4 months (additional doses at 12 and 24 months if not transplanted)	 IVIG improved transplant rates compared with placebo (35% vs 17%, P=0.048) IVIG significantly reduced PRA levels (P=0.033), but mean PRA remained >40%
	• N=101 GpD	Post-txp: IVIG 2 g/kg monthly x 4 months	 IVIG decreased waitlist times compared with placebo (4.8 years vs. 10.3 years, P=0.034)
PLEX	Montgomery, et al. 2011. Matched control trial N=215	Pre-txp: mean of 4±4 PLEX sessions with 0.1 g/kg Cytogam after each session	 98% (211/215) transplanted Improved survival rates with treatment vs. dialysis-only vs. dialysis-only or HLA compatible transplant; P <0.001
+ 9IN	୍ୟାତ	Post-txp: mean of 5±4 PLEX sessions with 0.1 g/kg Cytogam after each session	 1 year: 30.5%, 91.1%, 93.1% 3 years: 85.7%, 67.2%, 77% 5 years: 80.6%, 51.5%, 65.6% 8 years: 80.6%, 30.5%, 49.1%

lotz, et al. Am J Transplant 2002; 2:758–760. ordan, et al. JASN 2004; 15(12):3256-3262.

33

ailure

32

Rituximab Mechanism of Action

- Chimeric monoclonal antibody directed against CD20 on the surface of B cells
- Induces apoptosis of B cells via antibody-dependent cytotoxicity and complement-dependent cytotoxicity

Rituximab Dosing and Administration

Dose • 375 mg/m²/dose or 1000 mg IV • Dosing regimen is institution specific

Administration

• Pre-medicate with acetaminophen and diphenhydramine prior to infusion

Infusion rates:

imah Levicomp 2023

35

- Initial: 50 mg/hr (titrate to max of 400 mg/hr)
 Subsequent: 100 mg/hr (titrate to max of 400
 - mg/hr)

Preparation

- Compounded in normal saline or D5W
- Dilute to concentration of 1-4 mg/mL

Adverse Reactions

- Infusion reactions (decreases with subsequent infusions)
- Risk for bacterial/viral infections, progressive multifocal leukoencephalopathy (PML), and hepatitis B virus reactivation

36

38

• Vaccines may be ineffective

Rituximab Literature

	Trial	Intervention	Outcomes
tuximab	 Vo, et al. 2008. Exploratory, open- label, phase 1-2, single center study N=20 	Pre-txp: IVIG 2 g/kg (day 0 and 30) + rituximab 1 g (day 7 and 22)	 80% (16/20) transplanted Mean PRA 77% before vs. 44% after (P<0.001) 50% experienced acute rejection (31% were AMR) 12-month patient and graft survival were 100% and 94%, respectively
lG + ri	Vo, et al. 2014. • Double-blind, placebo-	Pre-txp: IVIG 2 g/kg (day 1 and 20) + rituximab 1 g or placebo (day 15)	 87% (13/15) transplanted (7 placebo vs. 6 rituximab) All AMR occurred in placebo group (N=3, P=0.06)
Ň	controlled trial • N=15 ເງິມ	Post-txp: IVIG 2 g/kg (within 10 days of txp) + rituximab 1 g or placebo (at 6 months)	 All graft loss occurred in placebo group (N=2) Rituximab had benefit on renal function at 6- and 12- months post-txp (P=0.046)
	Stegall, et al. 2006. • Single center,	Protocol 1 (N=13) • IVIG 2.1-3 g/kg pre-txp	Negative crossmatch achieved in: 36% (5/13) receiving protocol 1
uximab	 retrospective study N=61 	 Protocol 2 (N=32) PLEX, IVIG 0.1 g/kg, and rituximab 375 mg/m² 4-7 days pre-txp 	84% (27/32) receiving protocol 2 88% (14/16) receiving protocol 3 AMR rates were 80% vs. 37% vs. 29% respectively (Pcr0 05)
rii.	ମାର୍ଚ	Protocol 3 (N=16) Protocol 2 + thymoglobulin 1.5 mg/kg x 5 doses pre-txp	(1 < 0.00)

Desensitization Protocols Gud

Transplant Center	Antibody-Removal Technique	Rituximab
Cedars-Sinai	High-dose IVIG	Yes
Johns Hopkins	Low-dose IVIG and plasmapheresis	Yes
Mayo Clinic	Low-dose IVIG and plasmapheresis	No
University of Illinois	Low-dose IVIG and plasmapheresis	No

et al. Am J Transplant 2006; 6:346–351.

ab Levicomp 2023

Proteosome Inhibitor Mechanism of Action

- Bortezomib:
- 1st generation, reversible inhibitor of the 26S proteasomal subunit
- · Carfilzomib:
- 2nd generation, irreversible inhibitor of the 20S proteasomal subunit
- Induce apoptosis of plasma cells by disrupting protein processing

Proteosome Inhibitor Dosing and Administration

Dose

- Bortezomib: 1.3-1.5 mg/m²/dose
- Carfilzomib: 20-36 mg/m²/dose
- Dosing regimen is institution specific

Administration

Bortezomib: rapid IV push or SC
 Pre-medicate with ondansetron

nib. Lexicomp, 2023. nib. Lexicomp, 2023.

42

Carfilzomib: IV infusion over 10-30 minutes
 Hydrate with fluids prior to administration and
 pre-medicate with dexamethasone

Preparation

- Prepare in negative pressure chemotherapy hood
- Bortezomib: reconstitute with normal saline (1 mg/mL IV or 2.5 mg/mL SC)
- Carfilzomib: reconstitute with SWFI (2 mg/mL) and add to 50 mL of D5W

Adverse Reactions

<u>Class Effects</u> Bone marrow suppression Gastrointestinal side effects

- Bortezomib Hepatotoxicity Peripheral neuropathy
- <u>Carfilzomib</u> Infusion reactions Cardiovascular events Nephrotoxicity

Bortezomib Literature

Trial	Intervention	Outcomes
Woodle, et al. 2015. • Prospective, multiphase trial • N=44	Pre-txp: bortezomib (1.3 mg/m ²) x 6-8 doses w/ or w/o PLEX + rituximab (375 mg/m ²) x 1 dose (max 500 mg)	 43.2% (19/44) transplanted 13.5% (6/44) had ≿50% PRA reduction Rebound DSA at ≥90 days was observed depending upon the protocol used ACR and AMR rates were 18.8% and 12.5% at 6 months
Patel, et al. 2011. • Single center, pilot study • N=7 • PRA ≥50% despite IVIG and rituximab	Pre-txp: bortezomib (1.3 mg/m ²) on days 1, 4, 7, and 10 with 2 PLEX sessions before each dose	 85.7% (6/7) transplanted Mean PRA reduced from 62% to 35% (P=0.01) ADR: anemia (N=1), leukopenia (N=3), neuropathy (N=1), sepsis related death (N=2)

Carfilzomib Literature

Trial	Intervention	Outcomes
 Tremblay, et al. 2019. Prospective, non-randomized trial N=16 	 Group A (N=6) 12 doses of carfilzomib (escalating from 20-36 mg/m²), followed by 3 PLEX sessions pre-txp 	 Significant reduction in HLA antibodies (69.8% for group A, P=0.031; 80.1% for group B, P=0.938) Rebound antibodies occurred between 81 and 141 days
G _{II} D	Group B (N=10) Group A + additional weekly PLEX sessions prior to carfilzomib	 ADR: nausea (N=3), anemia (N=3), taugue (N=3), headache (N=3), paresthesias (N=3), thrombocytopenia (N=3), vomiting (N=3)
 Sriwattanakomen, et al. 2021. Retrospective, single center study N=9 	Pre-txp: PLEX + carfilzomib (20 mg/m ²) on days 1, 2, 8, 9, 15, and 16, followed by IVIG 2 g/kg after carfilzomib on day 16	66.7% (6/9) transplanted Mean PRA reduced from 76% to 40% (P=0.001) Rebound PRA of 22% 1 patient treated for AMR ADR: AKI (N=6), thrombocytopenia (N=3)
R.	Total of 20 cycles administered across 9 candidates	

odle, et al. Am J Transplant 2015; 15:101-118. el, et al. J Heart Lung Transplant 2011; 30:1320-1326.

44 Tremblay, Sriwattana

Tremblay, et al. *Am J Transplant* 2020; 20(2):411-421. Sriwattanakomen, et al. *J Heart Lung Transplant* 2021; 40(7):595-603.

UofU Desensitization Protocol #2

Day 0	PLEX
Day 1	PLEX + Bortezomib 1.3 mg/m ²
Ļ	
Day 3	PLEX
Day 4	PLEX + Bortezomib 1.3 mg/m ²
Ļ	
Day 7	PLEX
Day 8	PLEX + Bortezomib 1.3 mg/m ²
Ļ	
Day 10	PLEX
Day 11	PLEX + Bortezomib 1.3 mg/m ²
Ļ	
Day 25	Check PRA

46

Refractory Agents

Tocilizumab Mechanism of Action

- Humanized monoclonal antibody which antagonizes the interleukin-6 (IL-6) receptor
- Endogenous IL-6 mediates a variety of immune responses:
 - Activation and proliferation of T cells
 - Differentiation of B cells
 - Antibody production

nah Levicomp 2023

et al. Transplantation 2015; 99(11):2356-2363

Tocilizumab Dosing and Administration

Dose

8 mg/kg/dose IV monthly Dosing regimen is institution specific

Administration

- Obtain QuantiFERON-TB Gold prior to administration
- IV infusion over ≥60 minutes

mab Levicomp 2023

49

 Pre-medicate with acetaminophen, diphenhydramine, and steroids

Preparation

- Dilute solution in normal saline or halfnormal saline
- Final volume is 100 mL in patients >30 kg

Adverse Reactions

- Infusion reactions
- · Neutropenia and thrombocytopenia
- Hepatotoxicity

50

52

Tocilizumab Literature

Trial	Intervention	Outcomes
 Vo, et al. 2015. Phase I/II, single center, open label, pilot, exploratory study N=10 	Pre-txp: IVIG 2 g/kg (day 1 and 30) + tocilizumab 8 mg/kg on day 15, then monthly x 6 months	 50% (5/10) transplanted Mean DSA significantly reduced (P=0.03) Time to transplant was 8.1 months vs. 25 months prior to tocilizumab No rejection at 6 months, 1 episode of mild AMR at 12
Patients non-responsive to IVIG + rituximab Official Post-txp: IVIG 2 g/kg on POD 0 + tocilizumab 8 mg/kg on POD 2, then monthly x 6 months	 SAE: pneumonia (N=1), Bell's Palsy (N=1), infective colitis (N=1) 	

Example Tocilizumab Protocol ମୃତ

Protocol DSA
Vo, et al. Transplantation 2015; 99(11):2356-2363

51

USHP Resident CE Series - Spring 2023

Clazakizumab Mechanism of Action

- Investigational drug
- Humanized monoclonal antibody targeted against IL-6
- Blocks activation and proliferation of T cells, differentiation of B cells, and antibody production

Clazakizumab Literature

Trial	Intervention	Outcomes
 Vo, et al. 2022. Phase II, open label, single-arm exploratory study N=20 	/o, et al. 2022. Pre-txp: Phase II, open label, single-arm exploratory study > 5 PLEX sessions (day -15 to 0) VIG 2 g/kg x 1 (day 0) > Clazakizumab 25 mg SC monthly x 6 doses starting day 7	90% (18/20) transplanted Significant reduction in class I (P=0.001) and class II (P=0.006) antibodies Patient and graft survival at 12 months were 100% and 94%, respectively
G _{II} D	 Post-txp: IVIG 1 g/kg (POD 0 and 1) Clazakizumab 25 mg SC monthly x 6 doses starting POD 5 	 <u>4 patients experienced rejection</u> chronic active T cell mediated rejection (N=1), chronic active AMR (N=2), mixed rejection (N=1) Most common ADR was thrombocytopenia (N=8)

53

, et al. Am J Transplant 2022; 22:1133–1144.

Imlifidase (IdeS) Mechanism of Action

Investigational agent

an, et al. N Engl J Med 2017; 377:442-453.

, et al. Am J Transplant 2022; 22:1133–1144.

- Imlifidase = <u>IgG-d</u>egrading <u>e</u>nzyme derived from <u>Streptococcus pyogenes</u> (IdeS)
- Recombinant cysteine protease derived from S. pyogenes that cleaves IgG in 2 steps:
 - 1) Single cleavage of IgG (1 heavy chain remains intact)
 - Full cleavage of IgG (results in a F(ab')₂ fragment and Fc fragment)
- Fc region unable to interact with Fc
 receptors, preventing antibody response

Imlifidase (IdeS) Literature

Trial	Intervention	Outcomes
Jordan, et al. 2017. • 2 separate open-label, single-group, phase I/II trials • N=25	 United States (N=14): IdeS 0.24 mg/kg IV 4-6 hours pre-txp IVIG 2 g/kg (POD 7-14) Rituximab 375 mg/m² (POD 14-21) 	 96% (24/25) transplanted 1 episode hyperacute rejection (non-HLA antibodies) Near complete or complete reduction of HLA antibodies at and 24 hours after treatment AMR occurred in 10 patients (7 United States, 3 Swedish) SAE: bacteremia (N=1), abdominal infection (N=1), catheter
ମାର	 Sweden (N=11): IdeS 0.25 or 0.5 mg/kg IV 4-6 hours pre-txp 	intection (N=1), parvovirus (N=1), myalgia (N=1)
Jordan, et al. 2021. • Open-label, single- arm, phase 2 (Highdes) trial • N=19	 IdeS 0.25 mg/kg IV on POD 0 (additional dose within 2 days if negative crossmatch not achieved) IVIG 2 g/kg on POD 7 Rituximab 1 g on POD 9 	 94.7% (18/19) transplanted 2 patients with primary graft dysfunction 89.5% (17/19) achieved negative crossmatch within 24 hours Antibody rebound occurred in all but 2 patients AMR occurred in 7 patients (38.9% with onset between POD 2 and 19) ADR: infusion related reactions (N=2) and UTI (N=1)

54

³Don't Blame Me... for the Cost

Drug	Average Wholesale Price (AWP)	Cost per Cycle (70 kg patient)
IVIG (Gammagard)	\$19.37 per mL	\$54,236
Rituximab (Rituxan)	\$112.74 per mL	\$11,274
Bortezomib (Velcade)	\$1923.58 per 3.5 mg	\$5,144
Carfilzomib (Kyprolis)	\$595.84 per 10 mg	\$12,870
Tocilizumab (Actemra)	\$151.76 per mL	\$30,048

Additional Cost Considerations

Additional Considerations

59

omp 2023

Summary of Desensitization

Pros

- Reduce/remove antibodies
- Expansion of donor pool
- Less AMR and death compared to historical controls

Cons

- Antibody rebound
- Cost
- Infection (prolonged immunosuppression)
- Variable effectiveness
- Unpredictable timing

Putting it Together

Patient Refresher

- CV is a 33-year-old female
- Listed for dual heart-liver transplant in 9/2022 secondary to hypoplastic left heart syndrome and cirrhosis
- 100% PRA at the time of listing

Patient Case

62

Key Takeaways

	Development of anti-HLA antibodies results from exposure to foreign HLA
\checkmark	 Desensitization therapies target various steps affecting antibody production with the goal to reduce and remove pre-formed antibodies
\checkmark	 Protocols are transplant center-specific, and there are no prospective trials comparing various agents
\checkmark	+ IVIG \pm PLEX \pm rituximab remain first-line therapies for stable patients on the waitlist
\checkmark	 Proteosome inhibitors, tocilizumab, and investigational agents are reserved for high- risk patients and those refractory to first-line therapies