

LDL Limbo: How Low Should We Go?

Hayam Giravi PGY1 Pharmacy Resident University of Utah Health hayam.giravi@hsc.utah.edu April 4, 2023

Disclosure

- Relevant Financial Conflicts of Interest
 - · CE Presenter, Hayam Giravi, PharmD:
 - None
 - · CE mentor(s), Hanna Raber, PharmD, BCACP, TTS:
 - None
- Off-Label Uses of Medications
 - None

Learning Objectives – Pharmacists

At the conclusion of this activity, participants should be able to successfully:

- Interpret relevant primary literature and treatment recommendations included in the 2018 ACC/AHA and the 2022 ACC ECDP to evaluate LDL goals.
- Compare and contrast the indications, mechanism of action, and dosing of nonstatin therapies.
- 3) Identify when to add nonstatin therapy based on patient specific factors in both primary and secondary prevention.

Learning Objectives – Technicians

At the conclusion of this activity, participants should be able to successfully:

- Summarize the relevance of hyperlipidemia and the importance of implementing therapy.
- 2) Compare and contrast storage requirements for nonstatin therapies.
- 3) Discuss financial concerns and resources available for nonstatin therapies.

4

.

Abbreviations

- ABI: ankle-brachial index •
- ACS: acute coronary svndrome
- ASCVD: atherosclerotic cardiovascular disease
- · BPH: benign prostatic hyperplasia
- · CK: creatine kinase
- CKD: chronic kidnev disease
- CV: cardiovascular

- eGFR: estimated glomerular filtration rate
- HeFH: heterozygous familial hypercholesterolemia
- HDL-C: high-density lipoprotein cholesterol
- HoFH: homozygous familial hypercholesterolemia
- LDL-C: low-density lipoprotein cholesterol

- MI: myocardial infarction
- PAD: peripheral artery disease
- PAP: patient assistance program
- PCI: percutaneous coronary intervention
- UA: unstable angina
- siRNA: small interfering ribonucleic acid

Background

Guidelines and Recommendations

- 2018 AHA/ACC Multisociety Guideline on the Management of Blood Cholesterol
- 2019 ESC/EAS Guidelines for the Management of Dyslipidemias
- 2020 AACE/ACE Guidelines for the Management of Dyslipidemia and Prevention of Cardiovascular Disease
- 2021 ACC Expert Consensus Decision Pathway (ECDP) on the Management of ASCVD Risk Reduction in Patients with Persistent Hypertriglyceridemia
- 2022 USPSTF: Recommendations on Statin Use for the Primary Prevention of Cardiovascular Disease in Adults
- 2022 ACC ECDP on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk

Dyslipidemia and ASCVD9

Risk Factors

- Obesity
- Poor diet
- Lack of exercise
- Smoking
- Alcohol
- Age
- Genetics

Prevalence

• ~ 2 in 5 adults in the US have high cholesterol

↑ LDL-C = ↑ Risk

- Heart disease
- Stroke

USHP

USHI

Patient Management Groups¹

Adults 40-75 years old without diabetes and LDL-C 70-189 mg/dL > 20% Risk = High Intensity

7.5% - 19.9% = Moderate Intensity

2° Prevention

Nonstatin Therapies

1° Prevention

2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies²

- 1) In what **patient populations** and **situations** should newer nonstatin therapies be considered?
- 2) Which treatment options should be considered in patients who are truly statin intolerant?
- 3) If newer nonstatin therapies are to be added, which therapies should be considered and in what order to maximize patient benefit and preference?
 USHP

10

Ezetimibe PCSK9 mAb Bile Acid Sequestrants Bempedoic Inclisiran

Ezetimibe (Zetia®)2,3

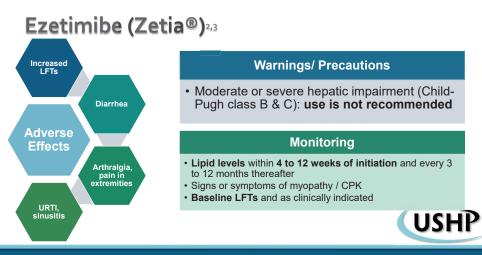
Mechanism of action

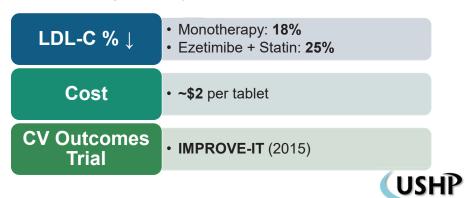
Inhibits absorption of cholesterol in the small intestine via NPC1L1

- \(\text{ cholesterol delivery} \) to the liver
- J hepatic cholesterol stores
- ↑ clearance of cholesterol from blood

Indication

- Primary HLD
- HoFH
- Homozygous sitosterolemia




12

USHP

- 13

Ezetimibe (Zetia®)2,3

IMPROVE-IT (2015)4

Study Design	Randomized, double-blind trial
Population	 18,144 patients Recent ACS (within 10 days) LDL-C 50 - 100 mg/dL on therapy or 50 to 125 mg/dL if not on therapy
Interventions	 Ezetimibe 10 mg + simvastatin 40 mg (n = 9,067) Simvastatin 40 mg + placebo (n = 9,077)
1° Endpoint	 CV death, nonfatal MI or stroke, UA requiring rehospitalization, or coronary revascularization

USHP

IMPROVE-IT (2015)4

Mean LDL-C 93.8 mg/dL

Baseline

Ezetimibe + Simvastatin 53.7 mg/dL

Monotherapy 69.5 mg/dL

Simvastatin

LDL % ↓ ~24%

Ezetimibe

USHP

Page 4 of 17

IMPROVE-IT (2015)4

Primary Outcome	Simvastatin Monotherapy (n=9077)	Simvastatin + Ezetimibe (n=9067)	Hazard Ratio (95% CI)	Р	NNT
Death from CV causes, major coronary event, or nonfatal stroke	2742 (34.7%)	2572 (32.7%)	0.936 (0.89 – 0.99)	0.016	50 over 7 years

Results of IMPROVE-IT indicate that in patients post ACS, ezetimibe 10 mg/simvastatin 40 mg is superior to simvastatin 40 mg alone in USH reducing CV events.

PCSK9 Monoclonal Antibodies 2,3

Medications: alirocumab (Praluent®) & evolocumab (Repatha®)

Mechanism of action: Binds to PCSK9 which results in an ↑ of LDL receptors available to remove circulating LDL-C

Indication

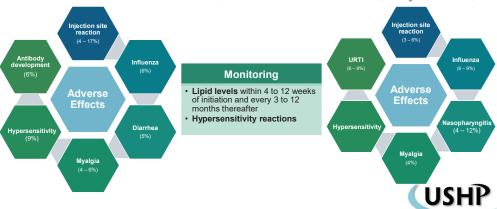
- Primary HLD
- Secondary prevention
- HoFH

Dosage & Administration

· Subcutaneous injections (eg, thigh, abdomen, or upper arm)

Storage

Refrigerated; can be kept at room temperature for up to 30 days



PCSK9 mAb Dosing^{2,3}

1° HLD or 2° Prevention	Alirocumab (Praluent®)	Evolocumab (Repatha®)
Biweekly	Initial: 75 mg every 2 weeks Maximum dose: 150 mg every 2 weeks	140 mg every 2 weeks
Monthly	300 mg every 4 weeks	420 mg every 4 weeks

USHP

Alirocumab (Praluent®)^{2,3} Evolocumab (Repatha®)23

PCSK9 Monoclonal Antibodies 2,3

LDL-C % ↓

- Alirocumab: 45 58%
- Evolocumab: 58 64%

Cost

• ~\$600 per month

CV Outcomes Trial

- **FOURIER** (2017)
- ODYSSEY Outcomes (2018)

FOURIER (2017)5

Study Design	Randomized, double-blind trial
Population	 27,564 patients ASCVD (prior MI, stroke, or PAD) LDL-C ≥ 70 mg/dL or non-HDL-C ≥ 100 mg/dL On maximally tolerated statin therapy
Interventions	 Evolocumab 140 mg every 2 weeks or 420 mg every 4 weeks (n = 13,784) Placebo (n = 13,780)
1° Endpoint	CV death, MI, stroke, hospitalization for UA, or coronary revascularization

FOURIER (2017)5

Baseline Median LDL-C 92 mg/dL (IQR 80 – 109)

After **Treatment**

30 mg/dL (IQR 19 – 46)

Least-squares Mean LDL % ↓

59%

USHP

FOURIER (2017)5

Primary Outcome	Evolocumab (n=13,784)	Placebo (n=13,780)	Hazard Ratio (95% CI)	P- Value	NNT
CV death, MI, stroke, hospitalization for UA, or coronary revascularization	1344 (9.8%)	1563 (11.3%)	0.85 (0.79 – 0.92)	<0.001	67 over 2.2 years

FOURIER demonstrated that addition of evolocumab to statin therapy significantly reduced the risk of CV events.

ODIL

PCSK9 mAb Coverage

Copay Card

- · Alirocumab: \$25/monthly
- · Evolocumab: \$5/monthly
- Commercial or private

HealthWell Foundation Grant

- Hypercholesterolemia Grant – Medicare patients only
- \$2500 annually to help with prescription copays
- Household income limit 500% of the Federal Poverty Level (adjusted for household size and high cost of living areas)

Amgen Safety Ne

- · Evolocumab PAP
- Income eligibility requirements
- Uninsured or your insurance plan excludes evolocumab
- Medicare Part D patients with product coverage who cannot afford their out of pocket costs

MyPraluent

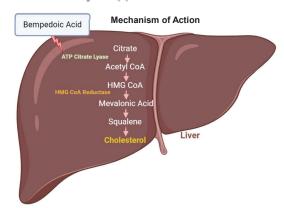
- Alirocumab PAP
 Uninsured
- Medicare Part D that covers alirocumab and patient meets income restrictions
- Alirocumab may be free of charge for up to 12 months (requires annual renewal)
- Need to have spent \$500 on prescriptions within the calendar year

LIS Program

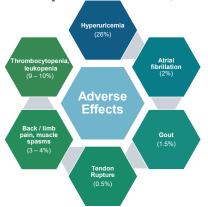
- Limits prescription outof-pocket costs for eligible Medicare Part D patients with limited income
- Reduce Medicare Part D premiums
- Lower drug copays

Bempedoic Acid (Nexletol®)2,3 approved Feb 2020

Indication


- Adjunct to diet and on maximally tolerated statin therapy
- Adults with HeFH or ASCVD requiring additional LDL-C lowering

Dosage & Administration


· 180 mg orally once daily

DDIs (avoid use)

- Simvastatin >20 mg
- Pravastatin >40 mg

Bempedoic Acid (Nexletol®)2,3 approved Feb 2020

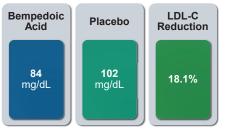
Monitoring

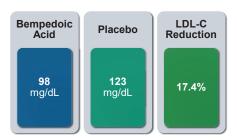
- Lipid levels within 8 to 12 weeks of initiation and every 3 to 12 months thereafter
- Signs or symptoms of **hyperuricemia** → assess uric acid levels as clinically indicated
- Signs or symptoms of tendon rupture or tendinopathy (joint pain, inflammation, swelling)

CLEAR Trials 6,7

Trial (year)	n	Key Inclusion Criteria	Interventions	Key Outcomes
HARMONY (2019)	2,230	 ASCVD and/or HeFH Maximally tolerated statin Baseline LDL-C ≥ 70 mg/dL 	• BA 180 mg (n=1,488) • Placebo (n=742)	% change LDL-C at week 12 Adverse events
WISDOM (2019)	779		• BA 180 mg (n=522) • Placebo (n=257)	• % change LDL-C at week 12

USHP


28


2

CLEAR Harmony

CLEAR Wisdom⁷

CLEARTIGITION

USHP

CLEAR Harmony

Outcome	Bempedoic Acid (n=1487)	Placebo (n=742)	Р
Adverse Events	1167 (78.5 %)	584 (78.7%)	0.91
Serious AE	216 (14.5%)	104 (14%)	0.80
AE leading to discontinuation	162 (10.9%)	53 (7.1%)	0.005
Myalgia	89 (6%)	45 (6.1 %)	0.92

When added to maximally tolerated statin therapy, bempedoic acid significantly reduced LDL-C levels by ~16.5% and did not lead to an overall increase in adverse events.

30

Bempedoic Acid (Nexletol®)_{2,3}

LDL-C % ↓ • 17% to 18%

Cost • ~\$475 per month

CV Outcomes
Trial • CLEAR OUTCOMES (2023)

USHP

Bempedoic Acid Coverage

Copay Card

- \$10/monthly
- Commercial or private insurance

HealthWell Foundation Grant

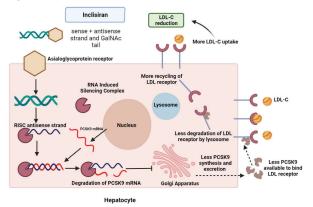
- Hypercholesterolemia Grant
 Medicare patients only
- **\$2500 annually** to help with prescription copays
- Household income limit 500% of the Federal Poverty Level (adjusted for household size and high cost of living areas)

LIS Program

- Limits prescription out-ofpocket costs for eligible Medicare Part D patients with limited income
- Reduce Medicare Part D premiums
- · Lower drug copays

USHP

32


- 3

Inclisiran (Leqvio®)2,3 approved Dec 2021

Mechanism of Action

- Inclisiran is a siRNA that silences the translation of PCSK9 mRNA
- PCSK9 proteins promote the degradation of LDLreceptors and inclisiran prevents PCSK9 protein formation intracellularly
 → allows for greater uptake of LDL-C into hepatocytes

Inclisiran (Leqvio®)2/3

Inclisiran (Leqvio®)2,3

Indication

- Adjunct to diet and maximally tolerated statin therapy
- Adults with HeFH or ASCVD requiring additional LDL-C lowering

Dosage & Administration

- Subcutaneous injection
- · Administered by a clinician
- 284 mg per dose

1st dose

Day 1

34

Arthralgia (5%) Arthralgia (5%) Arthralgia (5%) Antibody development (5%) Antibody development (5%) Antibody development (5%)

Inclisiran (Leqvio®)2,3

USHP

30

USHP

- 3

ORION 10 & 118

ORION-10, ORION-10 (2020) 3,178	Trial (year)	n	Key Inclusion Criteria	Key Baseline Characteristics	Interventions	1° Endpoint	Mean LDL-C ↓
	ORION-11	3,178	ASCVD with LDL ≥ 70 mg/dL or ASCVD risk equivalent with LDL ≥ 100 mg/dL (ORION11) Maximally tolerated statin therapy or documented statin intolerance +/- additional	 ASCVD-RE 13% HeFH 1.5% LDL-C 105 mg/dL Statin ~92% HI statin ~73% 		at day 510 (ORION- 10) • % change in LDL-C after day 90 and up to day 540 (ORION-	,

Inclisiran reduced LDL-C by approximately 50% when compared to placebo with similar rates of adverse

events reported between groups (with the exception of more injection site reactions reported with inclisiran).

Inclisiran Coverage

Must be billed under medical benefit as it is administered by a clinician

Copay Card

- **\$0**/monthly
- Commercial or private insurance

Novartis Patient Assistance Foundation

- Uninsured
- Underinsured
- Meet **income** guidelines adjusted for household size

38

30

2022 ACC ECDP on Role of Nonstatin Therapies for LDL-C Lowering

Clinical ASCVD on Statin Therapy Subgroups²

1

Very High Risk 2

Not at Very High Risk 3

Baseline LDL-C ≥ 190 mg/dL

USHP

40

4

Clinical ASCVD with Very High Risk on

Statin Therapy²

Target LDL-C: ≥ 50 % reduction from baseline and < 55 mg/dL

1st line nonstatin therapies

→ ezetimibe and/or PCSK9 mAb

2nd line nonstatin therapies

→ bempedoic acid or inclisiran

Criteria to Define "Very High Risk" 1,2

Major ASCVD Events Recent ACS (within the past 12 months) History of myocardial infarction (other than recent ACS event listed above)

Symptomatic PAD (history of claudication with ABI < 0.85 or previous revascularization or amputation)

History of ischemic stroke

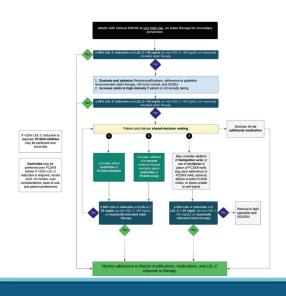
High-Risk Conditions Age ≥ 65 years

HeFH

History of prior coronary artery bypass surgery or PCI outside of the major ASCVD event(s)

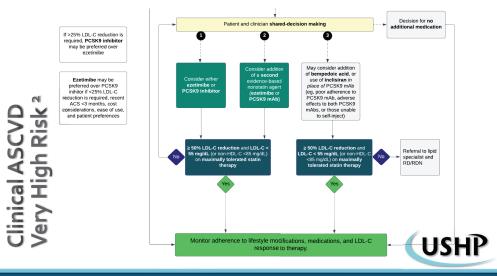
Diabetes

Hypertension


CKD (eGFR 15 - 59 mL/min/1.73)

Current smoking

Persistently elevated LDL-C (LDL-C ≥ 100 mg/dL despite maximally tolerated statin therapy and ezetimibe)

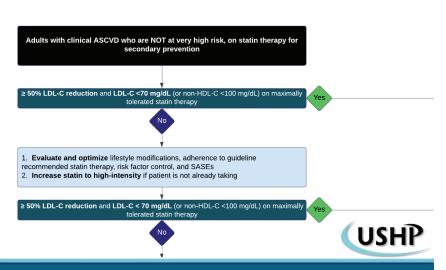

History of congestive HF

USHP

USHP

Adults with clinical ASCVD at very high risk, on statin therapy for secondary ≥ 50% LDL-C reduction and LDL-C < 55 mg/dL (or non-HDL-C <85 mg/dL) on maximally Clinical ASCVD Very High Risk tolerated statin therapy 1. Evaluate and optimize lifestyle modifications, adherence to guideline recommended statin therapy, risk factor control, and SASEs 2. Increase statin to high-intensity if patient is not already taking ≥ 50% LDL-C reduction and LDL-C < 55 mg/dL (or non-HDL-C <85 mg/dL) on maximally tolerated statin therapy USHP

How Low Should We Go?4,5,10


IMPROVE-IT FOURIER 53.7 30 mg/dL mg/dL

ODYSSEY OUTCOMES 53 mg/dL

Clinical ASCVD Not at Very High Risk² **USHP**

USHP Resident CE Series - Spring 2023

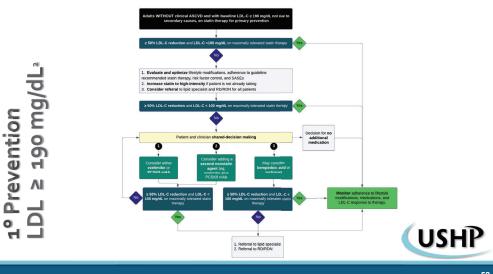
Page 12 of 17

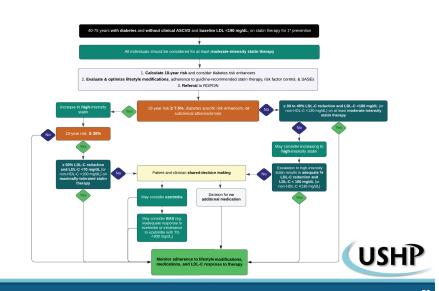
Patient and clinician shared-decision making Decision for no additional medication May consider adding or replacing elemipedoic acid or inclisiran PCSka mAb PSSk DD-C reduction and LD-C < 70 migld. (or non-HDLC < 100 migld.) or maximally tolerated statin therapy On maximally tolerated statin therapy 1. Referral to lipid specialist 2. Referral to RD/RDN 1. Referral to RD/RDN LD-C response to therapy.

Clinical ASCVD – Not at Very High Risk²

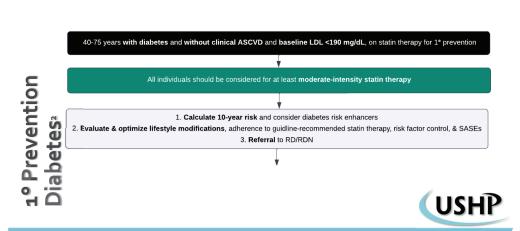
Target LDL-C: ≥ 50 % reduction from baseline and < 70 mg/dL

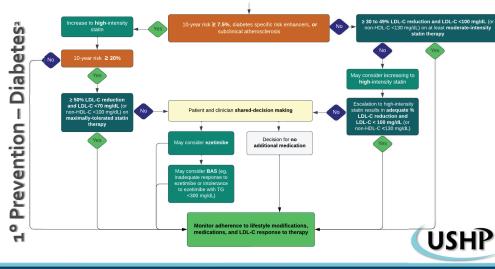
1st line nonstatin → ezetimibe


2nd line nonstatin → PCSK9 mAb


3rd **line nonstatin** → bempedoic acid or inclisiran

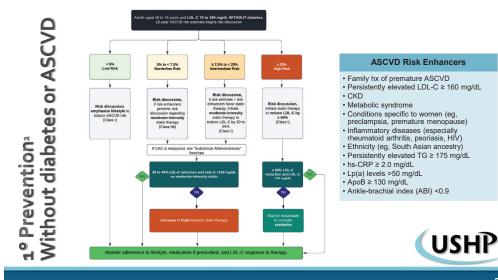
50


51



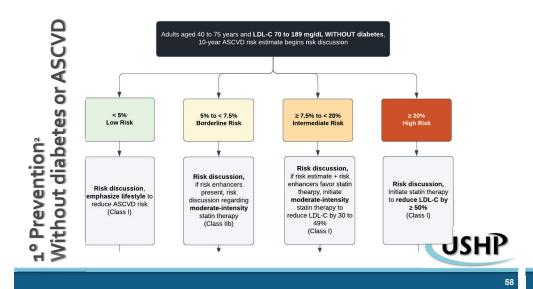
52

1° Prevention Diabetes


1º Prevention - Diabetes²

1st line nonstatin → ezetimibe

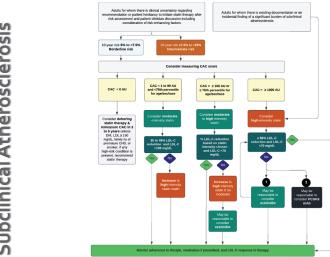
2nd line nonstatin → BAS


PCSK9 mAbs, bempedoic acid, and **inclisiran** do not currently have an established, evidence-based role for 1° prevention in patients with diabetes

56

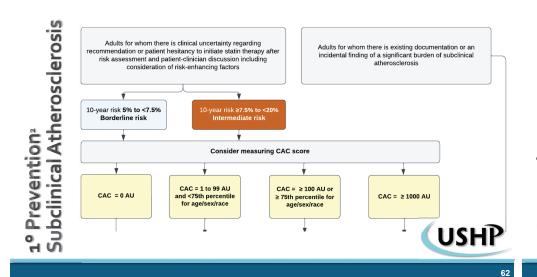
.

ASCVD Risk discussion, if risk estimate + risk enhancers favor statin Risk discussion, if risk enhancers present, risk discussion regarding moderate-intensity Risk discussion. Risk discussion thearpy, initiate moderate-intensity Initiate statin therap emphasize lifestyle t reduce ASCVD risk to reduce LDL-C by statin therapy to (Class I) (Class I) educe LDL-C by 30 to 49% (Class I) Without diabetes or If CAC is measured, see "Subclinical Atherosclerosis" on moderate-intensity statin ncrease to high-intensity statin therapy USHP Monitor adherence to lifestyle, medication if prescribed, and LDL-C response to therapy.

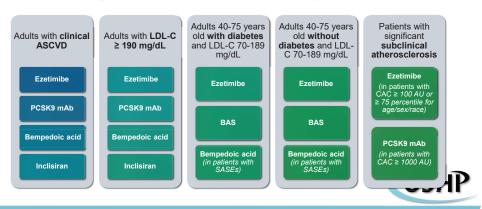

CAC Score 11,12

- Measurement of the amount of calcium in the walls of the arteries that supply the heart
- Used for risk assessment and prediction of future ASCVD events in patients with no known CAD
- Patient selection for CAC screening:
 - Adults without ASCVD, diabetes, or LDL-C ≥ 190 mg/dL with borderline to intermediate risk (5% to <20%) → if decision about statin therapy is uncertain can consider measuring CAC
 - Not recommended to routinely use in patients with ASCVD risk <5% or in high-risk patients (>20%)
- Scored using "Agatston units"

	Agatston Score	Plaque Burden	Probability of Significant CAD
	0	No plaque	Very low
	1 – 99	Mild calcification	Mild or minimal coronary artery stenosis
1	100 – 399	Moderate calcification	Nonobstructive CAD likely, although obstructive disease is possible
	≥ 400	Severe calcification	High likelihood of at least 1 significant coronary artery stenosis


1º Prevention Subclinical Atherosclerosis

1º Prevention2



60

Consider deferring statin therapy and consider moderate of the percentile for agels extrace of the per

Summary Table of Nonstatin Options

Clinician-Patient Discussion2,3

Drug	LDL-C reduction	Cost	DDI	Other considerations	CV outcomes data
Ezetimibe	18 – 25%	~\$10 per month	CyclosporineFibratesBAS	Not recommended in patients with moderate to severe hepatic impairment	Yes
PCSK9 mAb	45 – 64%	~\$600 per month	 No clinically significant DDI 	Subcutaneous injection at home	Yes
Bempedoic Acid	17 – 18%	~\$475 per month	Simvastatin >20 mg daily Pravastatin >40 mg daily	Pill burden / compliance May increase uric acid (eg, avoid in gout) Avoid in history of tendon rupture or tendon disorders	No (in progress)
Inclisiran	48 – 52%	~\$2,600 per injection	 No clinically significant DDI 	Subcutaneous injection by a clinician	No (in progress)

Acknowledgements

- · Hanna Raber, PharmD, BCACP, TTS
- · Adam Smith, PharmD, BCCP

References

- Grundy SM. Stone N.I. Bailey Al. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Circulation. 2019 Jun 18;139(25):e1182-e1186]. Circulation. 2019;139(25):e1082-e1143. doi:10.1161/CIR.000000000000625
- Writing Committee, Lloyd-Jones DM, Morris PB, et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee [published correction appears in J Am Coll Cardiol. 2023 Jan 3;81(1):104]. J Am Coll Cardiol. 2022;80(14):1366-1418. doi:10.1016/j.jacc.2022.07.006
- Lexicomp Online. Hudson, OH: Wolters Kluwer Clinical Drug Information, Inc; 2023.
- Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372(25):2387-2397. doi:10.1056/NEJMoa1410489
- Sabatine MS. Giudiano RP. Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-1722. doi:10.1056/NEJMoa1615664
- Ray KK, Bays HE, Catapano AL, et al. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N Engl J Med. 2019;380(11):1022-1032. doi:10.1056/NEJMoa1803917
- Goldberg AC, Leiter LA, Stroes ESG, et al. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial [published correction appears in JAMA. 2020 Jan 21;323(3):282]. JAMA. 2019;322(18):1780-1788. doi:10.1001/jama.2019.16585
- RaCenters for Disease Control and Prevention. Cholesterol. Available at: https://www.cdc.gov/cholesterol/index.htm. Accessed February 5, 2023.
- Ray KK, Wright RS, Kallend D, et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507-1519. doi:10.1056/NEJMoa1912387
- Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379(22):2097-2107. doi:10.1056/NEJMoa1801174
- DynaMed. Coronary Artery Calcium (CAC) Scoring and Clinical Use. EBSCO Information Services. Accessed February 12, 2023. https://www.dynamed.com/evaluation/coronary-
- artery-calcium-cac-scoring-and-clinical-use Cheong BYC, Wilson JM, Spann SJ, Pettigrew RI, Preventza OA, Muthupillai R. Coronary artery calcium scoring: an evidence-based guide for primary care ph USHP
- Med. 2021;289(3);309-324. doi:10.1111/joim.13176 Images created with BioRender.com
- 14) Flowcharts created in LucidChart